18 (1)° from the ideal staggered conformation, as follows from the three torsion angles 41.7 (4), C(5)-N(1)-C(1)-C(2)C(5)-N(1)-C(1)-C(3)C(5)-N(1)-C(1)-C(4)163.9(3)and $-78.6(3)^{\circ}$. For comparison, in the Co complex these angles are 41, 161 and -79° respectively, whereas in the triclinic and tetragonal modifications of the Cu complex the three methyl-group carbon atoms are in near-eclipsed positions.

A striking feature of the structure is the coplanarity of seven out of 11 non-hydrogen atoms of the ligand

Fig. 2. A view of the unit-cell contents down the b axis, with the a axis to the right and c axis upwards. The origin is in the lower left front corner. H atoms have been omitted.

and the Zn atom.* The two planar fragments, related by the twofold axis, are perpendicular $[89.2 (1)^{\circ}]$. The atoms of the pyrrole ring are rigorously coplanar and the same is true for the atoms in the five-ring chelate moiety.*

Fig. 2 gives a view of the cell contents along b.

* See deposition footnote.

References

- BRANDEN, C. I., JÖRNVALL, H., EKLAND, H. & FURUGREN, B. (1976). *The Enzymes*, Vol. XI, 3rd ed., edited by P. D. BOYER, pp. 103–190. New York: Academic Press.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHIRAI, M., CHISHINA, M. & TANAKA, M. (1975). Bull. Chem. Soc. Jpn, 48, 1079–1080.
- SPEK, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D.SAYRE, p. 528. Oxford: Clarendon Press.
- WEI, C. H. (1972a). Inorg. Chem. 11, 1100-1105.
- WEI, C. H. (1972b). Inorg. Chem. 11, 2315-2321.
- WEI, C. H. & EINSTEIN, J. R. (1972). Acta Cryst. B28, 2591-2598.
- STEWART, J. M. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1983). C39, 1001-1005

Structure du Complexe Dimérique Formé par un Polyéther Macrocyclique Tetrafonctionnel avec l'Ion Potassium, 2C₂₄H₄₄N₄O₁₀.3KBr.7H₂O: un Modèle de Canal Transmembranaire

PAR ANNE-CATHERINE DOCK ET DINO MORAS

Laboratoire de Cristallographie Biologique de l'IBMC, 15 rue René Descartes, 67084 Strasbourg CEDEX, France

ET JEAN-PAUL BEHR ET JEAN-MARIE LEHN

Laboratoire de Chimie Organique Physique, 1 rue Blaise Pascal, 67008 Strasbourg CEDEX, France

(Reçu le 30 septembre 1982, accepté le 19 avril 1983)

Abstract. $M_r = 1580.4$, triclinic, P1, a = 10.734 (2), b = 11.272 (2), c = 15.781 (4) Å, $\alpha = 109.85$ (2), $\beta = 99.35$ (2), $\gamma = 92.18$ (2)°, V = 1763.1 Å³, Z = 1, $D_x = 1.488$ Mg m⁻³, λ (Cu K α) = 1.5418 Å, F(000) = 824, room temperature. The structure of the hydrated 3:2 KBr complex of N, N, N', N'', N'', N''', N''', octamethyl-1,4,7,10,13,16-hexaoxacyclooctadecane-

2,3,11,12-tetracarboxamide (1) was solved by the heavy-atom method and refined to R = 0.096 using

6404 significant $[I>3\sigma(I)]$ independent reflections. The molecular packing consists of hydrated polymeric chains formed by the repetition of the dimeric unit $[\{(1),K\}_2,3H_2O]^{2+}.[KBr_3,4H_2O]^{2-}$ aligned along [110]. It is stabilized by extensive O-H···O and O-H···Br hydrogen bonding through water bridges as well as by K···O ion dipole interactions and Br···CH₃ van der Waals forces. The 18-crown-6 macrocycles are in relaxed conformations with their amide chains extend-

ing on both sides of the crown mean plane. All nonpolar groups are on the outside of the complex organic cation, whereas the polar interior contains bridging water molecules and K^+ cations. There are two alternating K^+ binding schemes, the cation being located in the crown mean plane or between it and the amide carbonyl groups. These features, together with the stacking of the macrocycles on top of each other, make this structure a solid-state model of a transmembrane channel, and a frozen picture for the flow of partly hydrated cations through it.

Introduction. Les polyéthers macrocycliques forment une vaste famille d'agents complexants de cations (Izatt & Christensen, 1979; Melson, 1979; De Jong & Reinhoudt, 1980). En particulier, de nombreux dérivés du composé 18-couronne-6 [structure (1), X = H] ont été synthétisés en vue d'augmenter la stabilité et la sélectivité de complexation de ce macrocycle, ou pour lui conférer de nouvelles fonctions comme la catalyse moléculaire et le transport de cations à travers des membranes (Cram & Cram, 1978; Lehn, 1978, 1979; Stoddart, 1979; De Jong & Reinhoudt, 1980). Pour l'élaboration et la prévision des propriétés de tels systémes, l'obtention de données structurales est essentielle.

Au cours de l'étude structurale de dérivés tétrafonctionnels du 18-couronne-6 (Behr, Lehn, Moras & Thierry, 1981; Daly, Schönholzer, Behr & Lehn, 1981; Behr, Dumas & Moras, 1982), nous avons été amené à déterminer la structure cristalline du complexe au potassium du ligand (1). En plus de l'apport de renseignements sur la conformation du complexe, le mode d'empilement moléculaire observé dans cette structure présente l'intérêt d'être un modèle statique possible d'un canal transmembranaire. En effet, bien que l'existence de tels canaux semble établie dans les systèmes vivants (Klingenberg, 1981; Neher & Sakmann, 1976), leur nature même ainsi que le mécanisme de passage des ions sont assez mal connus [Urry. Prasad & Trapane (1982); pour des analyses théoriques récentes du processus de conduction de cations voir Lauger (1982)]. Des systèmes modèles comme par exemple les pores transmembranaires formés par la gramicidine A ou l'alamethicine (Pressman, 1976) ont permis d'améliorer la compréhension de ce phénomène, mais il n'existe pas à l'heure actuelle de données structurales sur les complexes formés par ces ionophores. Le complexe dimérique décrit dans cet article permet par contre de visualiser deux modes de liaison du potassium en une sorte de photographie de la propagation de ce cation à travers le canal formé par l'empilement des macrocycles.

Partie expérimentale. Monocristal de $0.4 \times 0.4 \times 0.4$ mm (CHCl₂/MeOH/H₂O). Diffractomètre CAD-4 de Nonius. Cu Ka filtrée au Ni. Balayage en $\theta/2\theta$ avec ouverture du détecteur $6 \times 6 \text{ mm}$, distance 390 mm, angle de balayage $(0.8 + 0.14 \text{ tg}\theta)^{\circ}$. 6404 réflexions $[I > 3\sigma(I)]$ indépendantes avec $\sin\theta/\lambda < 0.6095 \text{ Å}^{-1}$, huit réflexions par paramètre. Corrections de Lorentz et de polarisation. Absorption négligée. Résolution de la structure par la méthode de l'atome lourd. Fonction de Patterson compliquée par l'existence d'un pseudo-mode centré C. Synthèses de Fourier successives. Positions des H, isotropes, calculées. Trois cycles d'affinement en matrice complète. R final 0,096, R_w 0,126 avec $w = 1/\sigma^2$. La plus grande variation sur un paramètre au dernier cycle est de 0,1 o. La valeur relativement élevée de R est due probablement à l'absorption (dispersion de \pm 7%). Le plus grand pic de la fonction différence finale est de 0,6 e $Å^{-3}$. Les facteurs de diffusion atomique sont ceux des International Tables for X-ray crystallography (1974).

La configuration absolue de (1) est connue puisque la synthèse à partir de l'acide (R,R) tartrique se fait sans racémisation (Behr, Girodeau, Hayward, Lehn & Sauvage, 1980), nous avons vérifié sur une vue stéréoscopique obtenue par le programme *ORTEP* (Johnson, 1965) que les coordonnées atomiques obtenues étaient en accord avec cette configuration. La planéité des huit groupements amide a été vérifiée; l'écart maximum est de 0,05 Å. Tous les calculs ainsi que les tableaux de coordonnées atomiques ont été faits à l'aide du système SDP de Nonius.

Discussion. Les paramètres atomiques et les facteurs de température isotropes équivalents sont rassemblés dans le Tableau 1.* Les distances et angles interatomiques sont reportés dans le Tableau 2.

La Fig. 1 représente les deux types de chaînes polymériques qui se côtoient dans le cristal. La première est organique et résulte de l'empilement de macrocycles complexant des cations potassium. L'autre chaîne, de formule $[(KBr_3, 4H_2O)^{2-}]_n$, est anionique. L'atome de potassium de cette chaîne K(3) et l'un des atomes de brome Br(3) sont pontés par deux molécules d'eau. Les distances moyennes sont égales à 3,19 (5) Å pour K…OH et 3,29 (5) Å pour Br…OH. Les deux

^{*} Les listes des facteurs de structure, des paramètres d'hydrogène, des facteurs d'agitation thermique anisotrope, des angles de torsion dans les macrocycles, des contacts intermoléculaires et des plans moyens des hétéroatomes dans les cycles ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 38514: 41 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU. Angleterre.

C(M2B)

0,5791 (15)

Tableau 1. Parametres d'agitation thermique et positions atomiques

Les écarts types sont donnés entre déterminés à partir de la matrice des moine

$B_{\text{éq}} = \frac{1}{3} \sum_{i} \sum_{j} B_{ij} a_i^* a_j$

у

0 4642 (1)

x

0.2520 (1)

Br(1)

C(M1B)

C(M2A)

C(02)

0,4083 (14)

0,5428 (9)

0,6013 (15)

-0,4995 (10)

-0,0370 (8)

0,0585 (13)

0,7583 (8)

0,6710 (6)

0,8424 (8)

4,3 (2)

2.6 (2)

4,8 (3)

ntre parenth oindres-carr	èses et ont été és.	C(010) C(M10A) C(M10B) C(011)	0,2931 (8) 0,1780 (12) 0,1653 (13) 0,3169 (8)
* a* a _i .a _j .		C(MIIA)	0,2887 (13)
		C(M11 <i>B</i>)	0,3972 (13)
<i>z</i> -0,08001 (9)	$B_{\acute{eq}}$ (Å ²) 3,96 (2)	Tableau	2. Lon
0,00000	4,06 (2) 6,92 (4)		coval
0,4482 (1)	3,14 (4)	C(1)-C(2)	
0,4509 (1)	3,55 (5)	C(2)–O(3)	
0,0606 (3)	7,2 (1)	O(3)–C(4)	
0,5965 (4)	3,1 (1)	C(4)–C(5)	

Br(2)	0,0000	0,0000	0,00000	4,06 (2)	con
Br(3)	0,2860 (2)	0,2451 (2)	-0,16024 (14)	6,92 (4)	00
K(1)	0,3861 (2)	-0,2230 (2)	0,4482 (1)	3,14 (4)	C(1)-C(2)
K(2)	-0,1671 (2)	0,1673 (2)	0,4509 (1)	3,55 (5)	C(2) = O(3)
K(3)	0,4486 (4)	0,2477(4)	0,0606(3)	7,2(1)	C(4) = C(5)
O(3')	0,0488 (7)	0,2924(7) 0 1557(7)	0,3905 (4)	3,5(2)	C(5) - O(6)
O(9')	-0.0585 (6)	0,1913 (5)	0,2864 (4)	2.3(1)	O(6) - C(7)
O(12')	-0,3008 (6)	0,2543 (5)	0,3123 (4)	2,4 (1)	C(7)-C(8)
O(15')	-0,3492 (6)	0,3745 (7)	0,4876 (4)	3,0 (1)	C(8)–O(9)
O(18')	-0,2005 (7)	0,3173 (6)	0,6228 (4)	2,8 (1)	O(9)-C(10)
O(C1')	-0,1353 (9)	0,0903 (7)	0,6099 (5)	3,9 (2)	C(10) - C(11)
O(C2')	0,0027 (9)	0,5326 (7)	0,6281 (5)	4,0 (2)	C(11) = O(12) O(12) = C(13)
O(C IU)	-0,2010(8)	-0,0111 (6)	0,2823 (4)	3,3(2)	C(13) - C(14)
O(0)	0,1437 (7)	-0.2619 (6)	0,5180 (4)	2,6(1)	C(14) - O(15)
O(6)	0.6288 (8)	-0.3066 (10)	0,4275 (6)	4.5 (2)	O(15)-C(16)
O(9)	0,4543 (5)	-0,3000 (5)	0,2784 (4)	2,2 (1)	C(16)-C(17)
O(12)	0,1947 (5)	-0,2603 (5)	0,3020 (4)	2,1 (1)	C(17)–O(18)
O(15)	0,1423 (6)	-0,1484 (6)	0,4779 (4)	2,7 (1)	O(18) - C(1)
O(18)	0,3076 (6)	-0,1970 (6)	0,6131 (4)	2,8 (1)	C(1) C(0))
0(01)	0,3388 (8)	-0,4269 (7)	0,6131 (5)	3,9 (2)	C(1) = C(01)
$O(C_2)$	0,3220(9) 0.3223(7)	-0,0264 (7)	0,3900 (3)	4,0(2)	C(01) = O(01)
0(C11)	0.3524(7)	-0.0570 (6)	0,3259 (5)	3.1 (1)	N(1) - C(M1A)
O(H1)	0,5960 (11)	0.0444 (9)	0,4467 (6)	5,9 (2)	N(1)-C(M1B)
O(H2)	-0,0162 (8)	0,4211 (7)	0,4591 (4)	3,6 (2)	
O(H3)	0,1968 (10)	0,5296 (11)	0,4447 (6)	5,5 (2)	C(2)–C(O2)
O(H4)	-0,0244 (10)	-0,2486 (10)	0,0795 (7)	6,2 (2)	C(O2)-O(C2)
O(H5)	-0,2262 (9)	-0,2217 (9)	-0,1612 (6)	5,0 (2)	$C(O_2) = N(2)$
O(H6)	0,2742 (14)	0,0140 (15)	-0,0827 (11)	9,8 (4)	N(2) = C(M2A) N(2) = C(M2B)
U(H7)	0,4706 (16)	-0,5096 (20)	-0,0009 (9)	24(1)	N(2) = C(M2B)
N(2')	0.0643 (9)	0.5854(9)	0,7798 (6)	3.6 (2)	C(10)-C(O10)
N(10')	-0,2982 (8)	-0.0611 (7)	0,1369 (5)	2,8 (2)	C(O10)-O(C10)
N(11')	-0,1768 (8)	0,3998 (7)	0,1646 (5)	2,8 (1)	C(O10)-N(10)
N(1)	0,4160 (8)	-0,3662 (7)	0,7611 (6)	3,0 (2)	N(10) - C(M10A)
N(2)	0,5723 (9)	0,0640 (8)	0,7481 (6)	3,5 (2)	N(10)-C(M10B)
N(10) N(11)	0,2137(9)	-0,3609 (8)	0,15/4 (6)	3,4 (2)	C(11) = C(011)
C(1')	-0.1052 (9)	-0,0929 (8)	0,1742 (0)	3,2(2)	C(011) = O(C11)
C(2')	0.0241(10)	0,3578 (9)	0.6864 (5)	2.6 (2)	C(O11) - N(11)
C(4')	0,1487 (11)	0,2135 (12)	0,5906 (8)	4,2 (3)	N(11)-C(M11A)
C(5')	0,2009 (12)	0,1977 (15)	0,5076 (8)	5,1 (3)	N(11) - C(M11B)
C(7')	0,1486 (10)	0,1706 (10)	0,3537 (7)	3,3 (2)	C(1) C(2) O(3)
C(8')	0,04 / 2 (9)	0,1171(8)	0,2707 (6)	2,7 (2)	C(1) = C(2) = O(3) C(2) = O(3) = C'(4)
C(10)	-0,1000 (8)	0,1444(7) 0.2471(8)	0,2137(3) 0,2301(6)	2,0(2) 2,4(2)	O(3) - C(4) - C(5)
C(13')	-0.3993 (9)	0.3371 (8)	0.3289 (6)	2.9 (2)	C(4) - C(5) - O(6)
C(14')	-0,4507 (9)	0,3294 (10)	0,4090 (6)	3,1 (2)	C(5)-O(6)-C(7)
C(16')	-0,3954 (10)	0,3811 (10)	0,5692 (6)	3,3 (2)	O(6)-C(7)-C(8)
C(17')	-0.2810 (10)	0,4158 (9)	0,6459 (7)	3,1 (2)	C(7) - C(8) - O(9)
C(OI')	-0,1088 (9)	0,1686 (9)	0,6854 (6)	2,7 (2)	C(8) = O(9) = C(10)
C(M1'R)	-0.0526(12) -0.0725(13)	0,2328(11) 0.0104(10)	0,8549 (7)	3,7(2)	C(10) = C(11) = O(12)
C(02')	0.0318 (10)	0,0104 (10)	0,7332 (8)	4,0(2)	C(11) - O(12) - C(13)
C(M2'A)	0.0987 (14)	0,5628 (13)	0.8662 (8)	4.6 (3)	O(12)-C(13)-C(14)
C(M2'B)	0,0714 (16)	0,7221 (11)	0,7874 (11)	5,5 (3)	C(13)-C(14)-O(15)
C(O10')	-0,2241 (10)	0,0190 (8)	0,2137 (6)	2,7 (2)	C(14)–O(15)–C(16)
C(M10'A)	-0,3274 (11)	-0,0346 (12)	0,0502 (7)	3,9 (2)	O(15) - C(16) - C(17)
C(M10'B)	-0,3494 (14)	-0,1817(12)	0,1377 (10)	4,8 (3)	C(16) = C(17) = O(18) C(17) = O(18) = C(1)
C(011)	-0,1885(8)	0,3734(8) 0.3087(11)	0,2413(0) 0.0701(7)	2,2(2)	O(18) = O(10) = O(1)
C(M11'B)	-0.1112(11)	0,5199 (9)	0,1744 (8)	$\frac{4,3}{3,8}$ (2)	
C(1)	0,3987 (9)	-0,2023 (8)	0,6892 (5)	2,4 (2)	O(18) - C(1) - C(01)
C(2)	0,5305 (9)	-0,1717 (8)	0,6762 (5)	2,2 (2)	C(2)-C(1)-C(01)
C(4)	0,6827 (10)	-0,2769 (14)	0,5852 (8)	4,3 (3)	C(1)-C(O1)-O(C1)
C(5)	0,7143 (12)	-0,2547 (17)	0,5049 (9)	5,8 (3)	O(C1)-C(O1)-N(1)
C(1)	0,0039 (9)	-0,2975 (9)	0,34/1 (7)	2,9 (2)	C(1) = C(01) = N(1)
C(10)	0,3042 (8)	-0,3002 (8)	0,2091(0) 0.2117(5)	2,3(2) 20(1)	C(01) = N(1) = C(M14)
C(11)	0,2461 (8)	-0,2582 (7)	0.2247 (5)	2.1 (1)	C(M1A) = N(1) = C(M1A)
C(13)	0,0944 (8)	0.1807 (8)	0,3206 (6)	2,3 (2)	
C(14)	0,0426 (8)	-0,1980 (10)	0,3995 (6)	2,8 (2)	C(1)–C(2)–C(O2)
C(16)	0,1026 (11)	-0,1573 (13)	0,5575 (7)	4,0 (2)	O(3)-C(2)-C(O2)
C(17)	0,2170 (10)	-0,1120 (10)	0,6369 (6)	3,2 (2)	C(2)-C(02)-O(C2)
C(M1A)	0,3813(9) 0.4599(12)	-0.3449(9) -0.2699(11)	0.8525 (6)	$\frac{2,3}{3,6}$ (2)	C(2) - C(02) - N(2) C(2) - C(02) - N(2)
· · · · · · · · · · · · · · · · · · ·	~, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		··········		

ableau 2. Loi	ngueurs (Å)) et angles	(°) des	liaisons		
covalentes avec leurs écarts types						
$\begin{array}{l} 1)-C(2)\\ 2)-O(3)\\ 3)-C(4)\\ 4)-C(5)\\ 5)-O(6)\\ 6)-C(7)\\ 7)-C(8)\\ 8)-O(9)\\ 9)-C(10)\\ 10)-C(11)\\ 11)-O(12)\\ 12)-C(13)\\ 13)-C(14)\\ 14)-O(15)\\ 15)-C(16)\\ 16)-C(17)\\ 17)-O(18)\\ 18)-C(1) \end{array}$	$\begin{matrix} 1,501 & (9) \\ 1,421 & (7) \\ 1,430 & (9) \\ 1,461 & (13) \\ 1,338 & (12) \\ 1,425 & (9) \\ 1,425 & (9) \\ 1,420 & (10) \\ 1,420 & (10) \\ 1,420 & (7) \\ 1,418 & (7) \\ 1,540 & (8) \\ 1,434 & (7) \\ 1,528 & (6) \\ 1,431 & (8) \\ 1,419 & (9) \\ 1,535 & (11) \\ 1,395 & (8) \\ 1,438 & (7) \\ \end{matrix}$	$\begin{array}{c} C(1')-C(2')\\ C(2')-O(3')\\ O(3')-C(4')\\ C(4')-C(5')\\ C(5')-O(6')\\ O(6')-C(7')\\ C(7')-C(8')\\ C(8')-O(9')\\ O(9')-C(10')\\ C(10')-C(11')\\ C(11')-O(12')\\ O(12')-C(13')\\ C(13')-C(14')\\ C(14')-O(15')\\ O(15')-C(16')\\ C(16')-C(17')\\ C(17')-O(18')\\ O(18')-C(1')\\ \end{array}$	1,508 1,430 1,416 1,468 1,369 1,419 1,489 1,438 1,432 1,510 1,438 1,430 1,487 1,444 1,431 1,510 1,421	(9) (7) (9) (113) (10) (9) (10) (7) (7) (7) (7) (8) (7) (9) (9) (9) (8) (11) (8) (7)		
1)-C(O1)	1,586 (9)	C(1')-C(O1')	1,571	(9)		
O1)-O(C1)	1,194 (8)	C(O1')-O(C1')	1,196	(8)		
O1)-N(1)	1,309 (9)	C(O1')-N(1')	1,341	(9)		
(1)-C(M1A)	1,467 (9)	N(1')-C(M1'A)	1,430	(9)		
(1)-C(M1B)	1,487 (9)	N(1')-C(M1'B)	1,471	(9)		
2)-C(O2)	1,551 (8)	C(2')-C(O2')	1,541	(9)		
(O2)-O(C2)	1,208 (8)	C(O2')-O(C2')	1,274	(9)		
(O2)-N(2)	1,335 (9)	C(O2')-N(2')	1,307	(9)		
(2)-C(M2A)	1,499 (11)	N(2')-C(M2'A)	1,469	(12)		
(2)-C(M2B)	1,463 (10)	N(2')-C(M2'B)	1,499	(11)		
10)-C(O10)	1,536 (8)	C(10')-C(O10')	1,520	(8)		
O10)-O(C10)	1,217 (8)	C(O10')-O(C10	1,233	(8)		
O10)-N(10)	1,334 (9)	C(O10')-N(10')	1,346	(9)		
(10)-C(M10A)	1,470 (12)	N(10')-C(M10'/	1,481	(10)		
(10)-C(M10B	1,479 (10)	N(10')-C(M10'/	3) 1,454	(11)		
11)–C(011)	1,541 (8)	C(11')-C(011')	1,511	(9)		
(011)–O(C11)	1,202 (8)	C(011')-O(C11	1,244	(8)		
(011)–N(11)	1,367 (8)	C(011')-N(11')	1,364	(8)		
(11)–C(M11A)	1,458 (11)	N(11')-C(M11'/	4) 1,481	(10)		
(11)–C(M11B)	1,451 (10)	N(11')-C(M11'/	B) 1,449	(9)		
$\begin{array}{l} (1) - C(2) - O(3) \\ (2) - O(3) - C(4) \\ (3) - C(4) - C(5) \\ (4) - C(5) - O(6) \\ (5) - O(6) - C(7) \\ (6) - C(7) - C(8) \\ (7) - C(8) - O(9) \\ (8) - O(9) - C(10) \\ (9) - C(10) - C(11) \\ (10) - C(11) - O(12) \\ (11) - O(12) - C(13) \\ (12) - C(13) - C(14) \\ (13) - C(14) - O(15) \\ (14) - O(15) - C(16) \\ (15) - C(16) - C(17) \\ (16) - C(17) - O(18) \\ (17) - O(18) - C(1) \\ (18) - C(1) - C(2) \end{array}$	$\begin{array}{l} 108,9 \ (4) \\ 116,8 \ (5) \\ 113,2 \ (7) \\ 114,8 \ (9) \\ 115,4 \ (7) \\ 107,6 \ (6) \\ 108,6 \ (5) \\ 116,5 \ (4) \\ 107,2 \ (4) \\ 105,5 \ (4) \\ 113,6 \ (4) \\ 108,6 \ (5) \\ 111,0 \ (5) \\ 111,0 \ (5) \\ 106,1 \ (5) \\ 111,0 \ (5) \\ 108,2 \ (6) \\ 105,1 \ (5) \\ 109,8 \ (5) \end{array}$	$\begin{array}{c} C(1')-C(2')-O(($	3') 110,7 4') 117,0 5') 111,0 6') 111,4 7') 111,9 8') 110,1 9') 107,3 10') 113,1 (11') 106,5 C(13') 112,1 C(14') 109,2 O(15') 107,3 C(16') 110,3 C(16') 110,3 C(16') 100,3 C(16') 110,3 C(17') 106,7 O(18') 107,3 C(1') 116,5 (2') 111,1	(5) (6) (7) (8) (7) (6) (5) (4) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5)		
$\begin{array}{l} (18)-C(1)-C(01)\\ (2)-C(1)-C(01)\\ (1)-C(01)-O(C1)\\ ((1)-C(01)-N(1)\\ (1)-C(01)-N(1)\\ (01)-N(1)-C(M1A)\\ (01)-N(1)-C(M1B)\\ (M1A)-N(1)-C(M1A)\\ \end{array}$	105,0 (5) 109,8 (5) 119,8 (6) 123,2 (7) 117,1 (5) 126,4 (6) 118,6 (6) B) 115,0 (6)	$\begin{array}{c} O(18')-C(1')-C(2')-C(1')-C(2')-C(1')-C(2'$	CO1') O1') O(C1') -N(1') N(1') C(M1'A) C(M1'B) -C(M1'B)	105,2 (5) 109,4 (5) 118,7 (6) 125,4 (7) 116,0 (5) 128,2 (6) 116,3 (6) 115,4 (6)		
(1)-C(2)-C(O2) (3)-C(2)-C(O2) (2)-C(O2)-O(C2) (C2)-C(O2)-N(2)	109,6 (5)	C(1')-C(2')-C(0)	O2')	111,0 (6)		
	109,5 (5)	O(3')-C(2')-C(0)	(O2')	106,1 (5)		
	118,4 (6)	C(2')-C(02')-C(0)	O(C2')	120,1 (6)		
	121,7 (6)	O(C2')-C(02')-C(0)	-N(2')	120,2 (7)		

119,8 (5)

124,6 (6)

C(O2)-N(2)-C(M2A)

C(O2)-N(2)-C(M2B)

C(M2A)-N(2)-C(M2B)

C(2')-C(O2')-N(2')

118,1 (7) C(O2')-N(2')-C(M2'B)

117,3 (7) C(M2'A)-N(2')-C(M2'B)

C(O2')-N(2')-C(M2'A)

Tableau 1 (suite)

0,7401 (11)

0,2271 (5)

0,0652 (8)

0,1723 (10)

0,2475 (6)

0,0784 (7) 0,1933 (9)

5,1 (3) 2,1 (1) 4,6 (3)

4,0 (3) 4,8 (3) 2,3 (2) 4,5 (3) 5,2 (2)

119,7 (6)

126,6 (7)

117,7 (8)

115,7 (7)

0,1897 (11)

-0,4752 (8)

-0,5543 (14)

-0,6755 (11)

-0,1261 (7)

-0,1716 (12) 0,0308 (10)

Tableau 2 (suite)

O(9) = C(10) = C(O(10))	108 5 (4)	O(9') = C(10') = C(O(0'))	109.5 (5)
C(11) = C(10) = C(010)	100, 5(4)	C(11') - C(10') - C(010')	103,3(5)
C(10) - C(010) - O(C10)	119.8 (5)	C(10') - C(010') - O(C10')	120 7 (6)
$O(C_{10}) = O(O_{10}) = O(C_{10})$	117,0 (3)	C(10) = C(010) = O(C10)	120,7 (0)
$O(C_{10}) - C(O_{10}) - N(10)$	122,7(0)	$O(C_{10}) = C(O_{10}) = N(10)$	119,9 (0)
C(10)-C(O10)-N(10)	117,4 (5)	C(10')-C(010')-N(10')	119,4 (5)
C(O10)-N(10)-C(M10A)	124,9 (6)	C(010')-N(10')-C(M10'A)	123,5 (6)
C(O10)-N(10)-C(M10B)	117,4 (7)	C(O10')-N(10')-C(M10'B)	118,3 (6)
C(M10A)-N(10)-C(M10B)	117,6 (7)	C(M10'A)-N(10')-C(M10'B)	118,2 (6)
C(10)-C(11)-C(011)	108,5 (5)	C(10') - C(11') - C(011')	111.4 (5)
O(12)-C(11)-C(O11)	108,7 (5)	O(12')-C(11')-C(011')	110,3 (5)
C(11)-C(011)-O(C11)	121,4 (5)	C(11')-C(011')-O(C11')	122,2 (6)
O(C11)-C(O11)-N(11)	123,4 (6)	O(C11')-C(O11')-N(11')	119,1 (6)
C(11)-C(O11)-N(11)	115,2 (5)	C(11')-C(O11')-N(11')	118,7 (6)
C(011)-N(11)-C(M11A)	126,1 (6)	C(011')-N(11')-C(M11'A)	123,9 (6)
$C(O_{11})-N(1_{11})-C(M_{11}B)$	117.0(7)	CO(11') - N(11') - C(M11'B)	119.2 (6)

Fig. 1. Vue ORTEP de l'unité asymétrique et nomenclature (les atomes d'oxygéne sont pointillés).

autres atomes de brome sont liés à trois molécules d'eau à la distance moyenne de 3,44 (5) Å. Les deux groupes d'atomes arrangés en losanges s'enchaînent par l'intermédiaire d'une des liaisons du brome à l'eau. La cohésion interchaîne est assurée par des interactions de van der Waals entre deux des atomes de brome et les groupements méthyle des chaînes organiques situés de part et d'autre des polymères anioniques.

Conformation des ligands

L'association des ligands organiques conduit à la formation d'un canal moléculaire. Ce canal résulte de l'empilement de modules élémentaires dimériques de formule $|\{(1),K\}_{2,3}H_2O|^{2+}$. L'unité élémentaire contient deux macrocycles dont les plans moyens sont presque parallèles, l'écart est de 5,8°. Les couronnes ne se superposent pas exactement à cause de l'encombrement stérique des résidus CONMe₂; elles sont déplacées parallèlement au plan moyen des oxygènes, ce qui conduit à une architecture en forme d'escalier. Les quatre résidus CONMe₂ sont en conformation diaxiale

et s'étendent de part et d'autre des couronnes. Les groupements méthyle apolaires sont tournés vers l'extérieur du canal ainsi formé, alors que les oxygènes carbonyliques sont dirigés vers l'intérieur et confèrent à cet espace un caractère polaire. Il est intéressant de remarquer l'influence de la nature des branchements latéraux X de la couronne sur la formation du canal. Le remplacement de l'un des groupements méthyle par un proton (X = CONHR) entraîne un changement de conformation par l'établissement d'une liaison hydrogène N-H···O avec l'un des oxygènes du cycle. Le résultat en est une orientation du groupement apolaire vers l'intérieur du cycle, peu favorable à la formation d'un canal (Behr, Lehn, Moras & Thierry, 1981). Les deux couronnes ont des conformations relaxées: les longueurs et angles de liaison C-O et C-C sont normaux, ainsi que les valeurs des angles dièdres.

Complexation des atomes de potassium

Les atomes de potassium sont complexés par les macrocycles de deux façons distinctes. L'organisation des couronnes en dimères résulte de cette différenciation.

Dans le premier schéma de complexation l'atome de potassium K(1) est au centre de la cavité du macrocycle (Fig. 1). Il est lié aux six atomes d'oxygène du cycle avec des distances variant de 2,73 à 2,84 Å et à l'oxygène O(C2) d'un résidu carbonylique proche (2,77 Å). La distance de cet atome au plan moyen passant par les six oxygènes est de 0,26 Å. Dans le deuxième mode de complexation, l'atome de potassium K(2) est situé au-dessus du macrocycle à 1,13 Å du plan moyen des oxygènes. Il n'est lié qu'à trois oxygènes du cycle: O(3) à 2,908 (5), O(12) à 2,891 (4) et O(18) à 2,758 (4) Å. K(2) complète sa coordination par des liaisons avec deux oxygènes carbonyliques (à 2,89 et 2,69 Å) et une molécule d'eau O(H1) à 2,83 Å. La cohésion du dimère est assurée par la molécule d'eau O(H1) qui relie K(2) aux deux oxygènes carbonyliques voisins de la couronne soeur. Deux autres molécules d'eau O(H2) et O(H3) connectent les dimères l'un à l'autre en établissant des liaisons hydrogène avec les oxygènes des groupements latéraux (aux distances de 2,50 à 2,77 Å) et entre elles (Fig. 1).

Fig. 2. Empilement moléculaire le long de l'axe [110].

Canal

L'arrangement tridimensionnel particulier de ces macrocycles délimite ainsi un espace qui a les propriétés attendues d'un canal moléculaire transporteur de cations: un intérieur polaire d'une taille convenable, ici adaptée au potassim, où le cation peut passer d'un site récepteur à un autre, et un extérieur apolaire compatible avec l'environnement lipidique d'une membrane biologique. La Fig. 2 représentant une succession de couronnes montre que le cation se lie alternativement selon l'un ou l'autre mode, au-dessus ou à l'intérieur de la couronne réceptrice et illustre bien la propagation d'un ion dans un canal tel qu'un pore membranaire. Des travaux sont actuellement en cours pour réaliser, par la liaison covalente des couronnes entre elles, et par le choix de résidus amphiphiles latéraux, un véritable canal moléculaire synthétique.

BEHR, J. P., GIRODEAU, J. M., HAYWARD, R. C., LEHN, J. M. & SAUVAGE, J. P. (1980). *Helv. Chim. Acta*, 63, 2096-2111.

- BEHR, J. P., LEHN, J. M., MORAS, D. & THIERRY, J. C. (1981). J. Am. Chem. Soc. 103, 701-703.
- CRAM, D. J. & CRAM, J. M. (1978). Acc. Chem. Res. 11, 8.
- DALY, J. J., SCHÖNHOLZER, P., BEHR, J. P. & LEHN, J. M. (1981). Helv. Chim. Acta, 64, 1444–1451.
- DE JONG, F. & REINHOUDT, D. N. (1980). Advances in Physical Organic Chemistry, Tome 17, édité par V. GOLD & D. BETHELL. London: Academic Press.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- IZATT, R. M. & CHRISTENSEN, J. J. (1979). Progress in Macrocyclic Chemistry, Tomes 1 et 2. New York: John Wiley.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KLINGENBERG, M. (1981). Nature (London), 290, 490-494.
- LAUGER, P. (1982). Biophys. Chem. 15, 89-100.
- LEHN, J. M. (1978). Pure Appl. Chem. 50, 871–892.
- LEHN, J. M. (1979). Pure Appl. Chem. 51, 979-997.
- MELSON, G. A. (1979). Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.
- NEHER, E. & SAKMANN, B. (1976). Nature (London), 260, 799-802.

PRESSMAN, B. C. (1976). Ann. Rev. Biochem. 45, 501-530.

- STODDART, J. F. (1979). Chem. Soc. Rev. 8, 85-142.
- URRY, D. W., PRASAD, K. U. & TRAPANE, T. L. (1982). Proc. Natl Acad. Sci. USA, 79, 390-394.

Références

BEHR, J. P., DUMAS, P. & MORAS, D. (1982). J. Am. Chem. Soc. 104, 4540-4543.

Acta Cryst. (1983). C39, 1005–1007

Structure of *catena*-Dichloro- μ -(1,4-dioxane-O,O')-(1,4-dioxane)zinc(II), [Zn(C₄H₈O₂)₂Cl₂]

BY A. BOARDMAN, R. W. H. SMALL AND I. J. WORRALL

Department of Chemistry, The University, Lancaster, England

(Received 23 February 1983; accepted 29 April 1983)

Abstract. $M_r = 312.5$, orthorhombic, $P2_12_12_1$, a =9.368 (5), b = 17.91 (3), c = 7.239 (5) Å, Z = 4, $D_r =$ $D_m = 1.70 \text{ Mg m}^{-3}$, $V = 1214.3 \text{ Å}^3$, 1.709, μ (Mo Ka) = 2.51 mm⁻¹, F(000) = 640, room temperature. The structure has been solved from 442 diffractometer-measured intensities with Μο Κα radiation $(\lambda = 0.7107 \text{ Å})$ and refined by full-matrix least squares to R = 0.0747. The coordination polyhedron about each Zn atom is a distorted trigonal bipyramid; Zn is covalently bonded to two Cl atoms and an O atom of a monodentate dioxane in the equatorial plane and the axial positions consist of O atoms from bidentate bridging dioxane molecules which overall form infinite chains parallel to the c axis.

Introduction. The halides of the Group IIb metals (Zn,Cd,Hg) readily form both 1:1 and 1:2 complexes with 1,4-dioxane (Juhasz & Yntema, 1940; Rheinboldt, Luyken & Schmittmann, 1937). Previous crystal structure determinations have shown that in the 1:1 and

1:2 complexes of mercury halides, the metal is four- and six-coordinate respectively and the Hg–O distances are long (2.66 and 2.83 Å), suggesting a very weak metal–ligand interaction (Groth & Hassel, 1964; Frey & Monier, 1971). In CdBr₂.dioxane a similar weak bond is indicated although here the determination is of low accuracy (Barnes, Sesay & Nichols, 1977). Stronger interactions are to be expected for the zinc halides and we here report the crystal structure of ZnCl₂.2dioxane.

Experimental. The complex, first reported by Rheinboldt, Luyken & Schmittmann (1937), is very susceptible to moisture and was prepared by condensing excess dry 1,4-dioxane on to anhydrous $ZnCl_2$ in *vacuo*. Needle crystals of $ZnCl_2$.2dioxane were obtained on standing and satisfactory crystals were transferred to Lindemann-glass tubes in a nitrogen-filled dry-box. D_m measured by flotation in 1,2-dibromoethane/benzene. Crystal data obtained from